

Welcome to fab_support’s documentation!

Contents:

	fab_support
	Stages

	Django configuration
	Features

	Levels of fabfile in this module

	Credits

	Installation
	Stable release

	From sources

	Usage

	General variables env[‘stages’]

	Environment variables env[‘stages’][‘stage_x’][‘ENV’]
	DJANGO_ALLOWED_HOSTS

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.2.1 (2018-05-11)

	0.2.0 (2018-04-20)

	0.1.0 (2018-02-04)

Indices and tables

	Index

	Module Index

	Search Page

fab_support

[image: _images/fab_support.svg]
 [https://pypi.python.org/pypi/fab_support][image: _images/fab_support1.svg]
 [https://travis-ci.org/drummonds/fab_support][image: Documentation Status]
 [https://fab-support.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/drummonds/fab_support/]Code to implement staging in Fabric and recipes for using that staging for pelican deployments and Django to Heroku.
It supports a local .env file importing for storing secrets that you don’t want to store in git.

Stages

Stages are the different stages of development of an application.
So they might go from:

test -> uat -> production -> old production

[image: Use of staging]Different stages of a single project

I have create a fab-support.py which does the heavy lifting of creating each environment. The aim is that this should
be hardly any more than the use of fabric and much simpler than the use of a full featured build Salt [https://saltstack.com/] or Ansible [https://www.ansible.com/]. This
is really only if you fit one of the use cases. Like Ansible this is a simple single master deployment system.

Suitable use cases:

	
	Deployment of Pelican static website

	
	Deployment to local file system for use with a file server

	Deployment to local for a file based browser

	Deployment to S3

	
	Simple Django to Heroku where you have at a minimum two stages eg UAT and Production.

	
	Copes with Postgres database

	Static data in AWS

In the root fabfile create a dictionary like this which
documents how to deploy each stage:

from fabric.api import env

Definition of different environments to deploy to
env['stages'] = {
 'localsite': {
 'comment': 'stage: For serving locally on this computer via mongoose. ',
 'config_file': 'local_conf.py',
 'destination': 'C:/Sites/local.drummond.info',
 'copy_method': copy_file,
 'SITEURL': 'http://localhost:8042',
 },
 'production': {
 'comment': 'stage: For serving on local file server',
 'destination': '//10.0.0.1/web/www.drummond.info',
 'config_file': 'local_conf.py',
 'copy_method': copy_file,
 'SITEURL': 'http://www.drummond.info',
},
}

Then the deployment by Pelican is pretty standardised eg build deploy and you have commands such as:

fab localsite deploy

I think it was inspired by BreytenErnsting [http://yerb.net/blog/2014/03/03/multiple-environments-for-deployment-using-fabric/]. This is then reiplmeneted using the standard env environment
and support in Fabric.

	Free software: MIT license

	Documentation: https://fab-support.readthedocs.io.

Django configuration

	The Django configuration includes the following features:

	
	deployment to Heroku

	Celery support with aqmp

	Log trapping support with Papertrail

Features

Runs on Windows. If it is getting to complex then it should probably be ported to Ansible or Salt.

Levels of fabfile in this module

In this module I use three levels of fabfile.py:

	At the project root

	at the /tests root

	at a test/demo level

This can get confusing, however they operate at different levels. The project is about project operations eg
releasing to fab_support to pypi.

The tests level is then about managing the tests. Some of these tests use fab support and a fabfile.py which gives you
the third level of nesting.

Project level fabfile

This is used to do work on the distribution:

	Make deocumentation

	build wheels

	deploy wheels to the package manager

At the tests level

This is used to run local commands. Often the commands will be run from the test fab file level and then lcd to the
demo level.

At the tests/demo level

This is a model fabric file- however it is not like a normal one in that fab_support is not installed in the environment
and in fact is located at ../../fab_support.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template. Thanks Audrey

Installation

Stable release

To install fab_support, run this command in your terminal:

$ pip install fab_support

This is the preferred method to install fab_support, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for fab_support can be downloaded from the Github repo [https://github.com/drummonds/fab_support].

You can either clone the public repository:

$ git clone git://github.com/drummonds/fab_support

Or download the tarball [https://github.com/drummonds/fab_support/tarball/master]:

$ curl -OL https://github.com/drummonds/fab_support/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use fab_support in a project add:

import fab_support

You will then need a fabfile.py like this:

from fabric.api import env
import os
import time

import fab_support

Operating System Environment variables have precedence over variables defined in the .env file,
that is to say variables from the .env files will only be used if not defined
as environment variables.
Load operating system environment variables and then prepare to use them
os_env = environ.Env()
env_file = '.env'
print('Loading : {} See {} for more info'.format(env_file, __name__))
os_env.read_env(env_file)

Definition of different environments to deploy to
env['stages'] = {
 'local': {
 'comment': 'FAC Galleria local version',
 'ENV': {
 'DJANGO_SECRET_KEY' : os.getenv('DJANGO_SECRET_KEY_LOCAL'),
 },
 'GIT_BRANCH': 'test'
 },
 'uat': {
 'comment' : 'www.drummonds.net UAT',
 'ENV': {
 'DJANGO_SECRET_KEY' : os.getenv('DJANGO_SECRET_KEY_LOCAL'), # same as local
 },
 'DJANGO_SETTINGS_MODULE' : 'drummonds_net.settings.production', # UAT same as production
 'HEROKU_APP_NAME' : 'drummonds-uat',
 'HEROKU_PROD_APP_NAME': 'drummonds-prod',
 'HEROKU_POSTGRES_TYPE' : 'hobby-basic', # Need more than 10,000 rows allows to 10M rows but costs $9 a month
 'PRODUCTION_URL' : 'uat.drummonds.net',
 'DJANGO_SECRET_KEY' : os.getenv('DJANGO_SECRET_KEY'),
 'DJANGO_ALLOWED_HOSTS' : '.herokuapp.com,.drummonds.net',
 'DJANGO_SENTRY_DSN' : 'https://b1a_very:_secrete6b34d18@sentry.io/1170320',
 'GIT_BRANCH' : 'uat'
 },
 'prod': {
 'comment' : 'www.drummonds.net production',
 'ENV': {
 'DJANGO_SECRET_KEY' : os.getenv('DJANGO_SECRET_KEY_PROD'),
 },
 'DJANGO_SETTINGS_MODULE' : 'drummonds_net.settings.production', # UAT same as production
 'HEROKU_APP_NAME' : 'drummonds-prod',
 'HEROKU_POSTGRES_TYPE' : 'hobby-basic', # Need more than 10,000 rows allows to 10M rows but costs $9 a month
 'PRODUCTION_URL' : 'www.drummonds.net',
 'DJANGO_SECRET_KEY' : os.getenv('DJANGO_SECRET_KEY'),
 'DJANGO_ALLOWED_HOSTS' : '.herokuapp.com,.drummonds.net',
 'DJANGO_SENTRY_DSN' : 'https://b1a_very:_secrete6b34d18@sentry.io@sentry.io/1125110',
 'GIT_BRANCH' : 'master'
 },
}

General variables env[‘stages’]

As shown above this is a list of stages. Each stage is a dictionary which has general variables and also an ENV
dictionary which has all the environment variables that are to be passed through to the final run time environment.

The documentation breaks down the general definitions here (those that have a meaning in fab_support) and any
environment variables that have a special meaning in the next section.

	Name

	Default

	Comments

	comment

	
	Identifies which stage this is - used internally eg fab fab_support.list_stages

	GIT_BRANCH

	master

	Which GIT branch to use when building deployment, Required for Heroku deployement when you want to deploy a different branch than master 1.

	GIT_PUSH

	‘’

	For specialised GIT push eg using a subtree ‘git subtree push –prefix tests/demo_django_postgres heroku master’

	GIT_PUSH_DIR

	‘.’

	Local directory to run git push from eg ‘../..’

	HEROKU_APP_NAME

	fab-support-test-app

	Name must start with a letter and can only contain lowercase letters, numbers, and dashes. The production name should end in prod for additional protection 3.

	HEROKU_PROD_APP_NAME

	fab-support-app-prod

	Used to identify where to copy the production data from. Essential for all builds.

	HEROKU_OLD_PROD_APP_NAME

	fab-support-app-old_prod

	Name of production (prod) after promoting uat to prod.

	HEROKU_POSTGRES_TYPE

	hobby-dev

	free to 10K rows, hobby-basic allows to 10M rows but costs $9 a month

	PRODUCTION_URL

	‘’

	This is where the production URL should be hosted. empty string if no remote URL 2.

	USES_CELERY

	False

	If True then will set up on Heroku a scaling worker

	1

	Heroku uses the local git repository to push from by default. So GIT_BRANCH will be the branch in the local repository

	2

	This controls the heroku routing layer which is external to the Django routing layer. The
DJANGO_ALLOWED_HOSTS is internal to the Django application and must also match the URL

	3

	This name must be globally distinct for heroku.

	4

	Heroku needs to know what the settings module is and so the name is not passed like a simple
environment variable.

Environment variables env[‘stages’][‘stage_x’][‘ENV’]

These are the variables that are set in the .env and are carried through to the development environments. stage_x might
be uat or prod etc. For heroku this will then involve the commmand line command like this
heroku config:set DJANGO_SECRET=very_secret.

A common pattern is to use a single .env file to store all the secrets and then to use this dictionary to allocate
the secrets to the same environment variable in different stages eg:

Not a complete file but for illustration
env['stages'] = {
 'local': {
 'ENV': {
 'DJANGO_SECRET_KEY' : os.getenv('DJANGO_SECRET_KEY_LOCAL'),
 },
 },
 'uat': {
 'ENV': {
 'DJANGO_SECRET_KEY' : os.getenv('DJANGO_SECRET_KEY_UAT'),
 },
 },
 'prod': {
 'ENV': {
 'DJANGO_SECRET_KEY' : os.getenv('DJANGO_SECRET_KEY_PROD'),
 },
 },
}

If an environment variable is listed here it is because fab_support provides a default or takes some other action
with it.

	Name

	Default

	Comments

	DJANGO_SETTINGS_MODULE

	{{app_name}}

	Two scoops config.settings.test or config.settings.production 4.

	DJANGO_ALLOWED_HOSTS

	Set

	Will by default allow the app name setup. See DJANGO_ALLOWED_HOSTS for more details.

	PYTHONHASHSEED

	random

	Heroku default

DJANGO_ALLOWED_HOSTS

This pattern was defined by Python django cookiecutter project and is the definition of a environment variable so
that [ALLOWED_HOSTS]_ which is a standard Django setting. Then in the settings file you would have code like this:

ALLOWED_HOSTS = env.list('DJANGO_ALLOWED_HOSTS', default=['{{ cookiecutter.domain_name }}'])

Defaults by application type.

	Application

	Default

	Heroku

	f’{HEROKU_APP_NAME}.herokuapp.com’

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/drummonds/fab_support/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

fab_support could always use more documentation, whether as part of the
official fab_support docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/drummonds/fab_support/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up fab_support for local development.

	Fork the fab_support repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/fab_support.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv fab_support
$ cd fab_support/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 fab_support tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/drummonds/fab_support/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_fab_support

Credits

Development Lead

	Humphrey Drummond <hum3@drummonds.net>

Contributors

None yet. Why not be the first?

History

0.2.1 (2018-05-11)

	Updating pelican comamnds to the parameter method of passing stage.

Note tests were failing to a non obvious cause. This was Heroku CLI needed updating to the latest version.
I manually upgraded.

0.2.0 (2018-04-20)

	Change the way environment variables are passed through.

In version 0.1 only the following variables were considered env variables:

‘DJANGO_SECRET_KEY’, ‘DJANGO_ADMIN_URL’, ‘DJANGO_AWS_ACCESS_KEY_ID’, ‘DJANGO_AWS_SECRET_ACCESS_KEY’,
‘DJANGO_AWS_STORAGE_BUCKET_NAME’, ‘DJANGO_MAILGUN_API_KEY’, ‘DJANGO_SERVER_EMAIL’, ‘MAILGUN_SENDER_DOMAIN’,
‘DJANGO_ACCOUNT_ALLOW_REGISTRATION’, ‘DJANGO_SENTRY_DSN’, ‘XERO_CONSUMER_SECRET’, ‘XERO_CONSUMER_KEY’

Now there is an ‘ENV’ list of variables that allows any variables to be passed through and also for them to
renamed on the way from the file .env

0.1.0 (2018-02-04)

	First release on PyPI.

Index

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to fab_support’s documentation!

 		
 fab_support

 		
 Stages

 		
 Django configuration

 		
 Features

 		
 Levels of fabfile in this module

 		
 Project level fabfile

 		
 At the tests level

 		
 At the tests/demo level

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 General variables env[‘stages’]

 		
 Environment variables env[‘stages’][‘stage_x’][‘ENV’]

 		
 DJANGO_ALLOWED_HOSTS

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.1 (2018-05-11)

 		
 0.2.0 (2018-04-20)

 		
 0.1.0 (2018-02-04)

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

